Heterodimers reveal that two arabinose molecules are required for the normal arabinose response of AraC.

نویسندگان

  • Michael E Rodgers
  • Robert Schleif
چکیده

AraC protein, which regulates expression of the l-arabinose operon in Escherichia coli, is a dimer whose DNA binding affinity for pairs of DNA half-sites is controlled by arabinose. Here we have addressed the question of whether the arabinose response of AraC requires the binding of one or two molecules of arabinose. This was accomplished by measuring the DNA dissociation rates of wild-type AraC and heterodimeric AraC constructs in which one subunit is capable of binding arabinose and the other subunit does not bind arabinose. Solutions consisting entirely of heterodimers were formed by spontaneous subunit exchange between two different homodimers, with heterodimers being trapped by the formation of an intersubunit disulfide bond between cysteine residues strategically positioned within the dimerization interface. We found that the normal arabinose response of AraC requires the binding of two arabinose molecules. These results provide additional constraints on mechanistic models for the action of AraC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of rigidity in DNA looping-unlooping by AraC.

We applied two experiments useful in the study of ligand-regulated DNA binding proteins to AraC, the dimeric regulator of the Escherichia coli l-arabinose operon. In the absence of arabinose, AraC prefers to loop DNA by binding to two half-sites that are separated by 210 base pairs, and in the presence of arabinose it prefers to bind to adjacently located half-sites. The basis for this ligand-r...

متن کامل

A genetic and physical study of the interdomain linker of E. Coli AraC protein--a trans-subunit communication pathway.

Genetic experiments with full length AraC and biophysical experiments with its dimerization domain plus linker suggest that arabinose binding to the dimerization domain changes the properties of the inter-domain linker which connects the dimerization domain to the DNA binding domain via interactions that do not depend on the DNA binding domain. Normal AraC function was found to tolerate conside...

متن کامل

Constitutive mutations in the Escherichia coli AraC protein.

The Escherichia coli AraC protein represses and induces the araBAD operon in response to the absence or presence of l-arabinose. Constitutive mutations in the AraC gene no longer require the presence of l-arabinose to convert AraC from its repressing to its inducing state. Such mutations were isolated directly by virtue of their constitutivity or by their resistance to the nonmetabolizable arab...

متن کامل

AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action.

This review covers the physiological aspects of regulation of the arabinose operon in Escherichia coli and the physical and regulatory properties of the operon's controlling gene, araC. It also describes the light switch mechanism as an explanation for many of the protein's properties. Although many thousands of homologs of AraC exist and regulate many diverse operons in response to many differ...

متن کامل

Apo-AraC actively seeks to loop.

In the absence of arabinose and interactions with other proteins, AraC, the activator-repressor that regulates the araBAD operon in Escherichia coli, was found to prefer participating in DNA looping interactions between the two well-separated DNA half-sites, araI1 and araO2 at their normal separation of 211 base-pairs rather than binding to these same two half-sites when they are adjacent to on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 51 41  شماره 

صفحات  -

تاریخ انتشار 2012